Московский Государственный Университет им. М.В. Ломоносова

Химический факультет

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ИССЛЕДОВАНИЙ ТЕТРАГИДРОФУРАНА МЕТОДОМ ГАЗОВОЙ ЭЛЕКТРОНОГРАФИИ.

Курсовая работа

студента 4-го курса Химического факультета МГУ им М.В. Ломоносова

XXXXXX XXXXX XXXXXXXXX

Научные руководители:

к.ф.м.н. в.н.с. XXXXXXXX X.X. н.с. XXXXXXXX X.X.

Преподаватель:

к.ф.м.н. ст.н.с. XXXXXXXX X.X.

МОСКВА, 2001

Содержание.

Введение	3
Обзор литературы	5
1.Газовая электронография	5
2. Теоретические модели для учета псевдовращения в насыщенных пятичления	ых
циклах	6
3.Описание геометрии и конформационных превращений тетрагидрофурана	9
Расчетная часть	13
Результаты и их обсуждение	.15
1. Расчет равновесной геометрии тетрагидрофурана	15
2.Расчет энергий и геометрий остальных конформаций	.15
3.Построение теоретических электронографических кривых	17
Выводы	.23
Список литературы	.24

Введение.

Циклические структуры представляют собой основу большинства органических веществ. Большинство циклических структур являются неплоскими по причине углового напряжения или отталкиванием между заместителями. Геометрия и конформационные превращения в циклических структурах широко исследовались и исследуются до сих пор как теоретическими, так и практическими методами.

Пятичленные ненасыщенные карбоциклы (как содержащие, так и не содержащие гетероатомы) особенно интересны при конформационном анализе. Пояснить это можно на примере циклопентана. Угол в плоском равностороннем пятиугольнике (108°) лишь немного меньше тетраэдрического (109°28'), а поэтому логично предположить, что отклонение от планарности для циклопентана будет небольшим. Для этой молекулы возможны две крайние конформации – «конверт» (обозначается Е; четыре атома углерода лежат в одной плоскости) и «твист» (обозначается Т; два соседних атома лежат по разные стороны плоскости, образованной тремя остальными). Конформация «твист» выгоднее на 0,4-1,1 ккал/моль (в зависимости от метода оценки, [1]); таким образом, барьер перехода между конформациями очень невысок, и они могут свободно взаимопревращаться даже при температурах намного ниже комнатной. Поэтому при описании конформационных превращений данной

Рис.2. Описание псевдовращения в случае циклопентана.

молекулы используется термин «псевдовращение» - выделяется координата, соответствующая движению большой амплитуды, при котором атомы колеблются так, как будто молекула вращается вокруг оси Z (см. рис. 2).

Псевдовращение представляет собой очень интересное явление, для описания которого было предложено много теоретических моделей (они будут рассмотрены далее). Однако, существует немного экспериментальных методов, способных как-либо «зафиксировать» псевдовращение и численно определить его параметры. Одним из таких методов является газовая электронография: с одной стороны, мы можем получить экспериментальную электронографическую кривую, а с другой – провести теоретическое исследование, и, исходя из полученных результатов, построить теоретическую электронограмму, чтобы затем сравнить ее с экспериментальной.

Целью данной работы являлось теоретическое исследование молекулы тетрагидрофурана в рамках существующих современных моделей описания движений большой амплитуды в пятичленных циклах, с дальнейшим построением теоретических электронограмм и решением обратной электронографической задачи.

Обзор литературы.

1.Газовая электронография.

Газовая электронография является дифракционным метолом исследования структуры свободных молекул. Метод газовой электронографии был разработан в 1930г. в Германии Г.Марком и Р.Вирлем[2]. Методика газовой электронографии первого этапа развития (до 50-х годов), применявшая при расшифровке электронограмм упрощенное уравнение рассеяния электронов только на ядрах атомов жестких молекул, позволяла определять длины связей с точностью 0.02...0.03 Å и валентные углы 2...4°. В 50-х годах электронография значительных претерпела два улучшения: 1)введение сектормикрофотометрической методики; 2)улучшение используемой теории рассеяния электронов (учет функции плотности вероятности распределения пар атомов в молекуле).

Принципиальная схема современного электронографа представлена на рис. 3.

Рис.3.Принципиальная схема электронографа: 1 - электронная пушка, 2 - магнитная линза, 3 - сопло испарителя, 4 - ловушка для улавливания паров исследуемых веществ, 5 - флуоресцентный экран, 6 – вращающийся сектор с ловушкой нерассеянных электронов (отдельно показана форма сектора), 7 – фотопластинка, 8 – окно для присоединения трубопровода высоковакуумного насоса.

Экспериментально полученные электронограммы обычно представляют в виде зависимости sM(s) – s или Im(s) – s, где

$$s = \frac{4\pi}{\lambda} \cdot \sin\frac{\theta}{2}$$

(λ- длина волны электронов, θ- угол рассеяния), Im(s) – молекулярная составляющая интенсивности рассеяния, M(s) – функция приведенной молекулярной составляющей:

$$M(s) = \frac{I_{\mathcal{M}}(s)}{Ia(s)}$$

где Ia(s) – атомная составляющая интенсивности рассеяния. Если известны функции Im(s) (или sM(s)), то можно построить функцию f(r) радиального распределения, т.е. распределение межатомных расстояний в молекуле.

Анализ электронографических данных представляет собой довольно сложную задачу, решаемую при помощи квантовой химии. При этом в основном используется приближение малых колебаний атомов в молекуле. В особых случаях, например внутреннего вращения или деформационных колебаний низкой частоты, задача заметно усложняется. Иногда в уравнения интенсивности молекулярного рассеяния просто вводятся параметры соответствующих потенциалов, однако, зачастую анализ молекулы, имеющей движение большой амплитуды, представляет собой задачу, требующую индивидуального рассмотрения.

2. Модели для учета псевдовращения в насыщенных

пятичленных циклах.

А.Описание гомоядерных циклических систем.

Киллпатрик и сотрудники[3] впервые описали конформационные превращения циклопентана в терминах псевдовращения, используя z-смещения, перпендикулярные к средней плоскости кольца:

$$z_{j} = (2/5)^{1/2} q_{z} \cos(\phi + 4\pi (j - 1)/5)$$
(1)
$$j = 1, \dots, 5$$

где q_z – амплитуда, то есть отклонение от планарности, а ф - фазовый угол псевдовращения.

Модель была улучшена Кремером и Поплом [4], которые определили среднюю плоскость кольца, и расширили модель, сделав ее применимой для любого неплоского моноцикла (не обязательно гомоядерного). Альтернативное описание геометрии было предложено Альтона и сотрудниками[5] – они основывались на соотношениях между пятью эндоциклическими торсионными углами (определение углов см.на рис.2):

$$\chi_j = \chi_m \cos(\psi + 4\pi (j - 1)/5)$$
 (2)
 $j = 1, ..., 5$

где амплитуда χ_m - максимальное значение, принимаемое торсионными углами, и ψ - фазовый угол.

Рис.2. Определение валентных и торсионных углов в пятичленном цикле.

Это выражение является приближением и строго работает только для бесконечно малых отклонений от планарности. Сравнение параметров и их стандартных отклонений для различных циклических соединений показало[6], что два вышеописанных метода дают практически одинаковые результаты, а поэтому вполне равноценны для практических целей.

В одной из последних работ, посвященных проблеме описания конформационных превращений в пятичленных циклах, корейскими авторами[1] была предложена следующая модель: в качестве параметра, описывающего отклонение от планарности, было предложено использовать угол α (см. рис.1). Такой выбор переменных позволяет построить точную геометрию неплоского пятичленного цикла с фиксированными длинами связей:

$$\alpha_{j} = q_{\alpha} \cos(\phi + 4\pi (j - 1)/5)$$
 (3)
 $j = 1, ..., 5$

Здесь α_j – угол (∠РОР_j) между плоскостью ХОҮ и прямой, соединяющей начало координат и атом с номером j, q_α - амплитуда, характеризующая отклонение от планарности, и φ - фаза псевдовращения.

При условии наличия набора картезианских координат для конформации, полученной при эксперименте или теоретическом расчете, предыдущие модели позволяют описать конформационные превращения пятичленного кольца при помощи двух параметров псевдовращения. Несмотря на это, картезианские координаты атомов могут быть получены из этих двух параметров, только если семь других заданы наперед. В большинстве случаев в качестве подходящего набора параметров применяют длины связей в цикле, которые почти не меняются при псевдовращении.

Б.Обобщения моделей для случая гетероядерных систем.

Вышеописанные методы до сих пор не касались случая молекул, имеющих один или несколько гетероатомов в цикле. Согласно уравнению (1), для равностороннего пятичленного кольца фаза каждого атома равна $\phi + 4\pi$ (j-1)/5. Для неравностороннего кольца мы получим смещение фазы от этого значения ввиду отличия в длинах связей в цикле и смещения геометрического центра. Именно поэтому функции псевдовращения требуют введения дополнительного терма для коррекции атомных фаз.

Диез и сотрудники[7] модифицировали функцию псевдовращения, предложенную Альтона[5], для описания взаимосвязанных изменений в эндоциклических торсионных углах, введя коррекционный терм ∈_j (так называемый сдвиг атомной фазы):

$$\chi_j = a_j \chi_m \cos(\psi + \epsilon_j + 4\pi(j-1)/5)$$
 (4)
 $j = 1, ..., 5$

где амплитуда χ_m - максимальное значение, принимаемое торсионными углами, a_j – параметр корреляции q_z (см. уравнение (1)) с χ_m , и ψ - фазовый угол. Хотя это уравнение, как и уравнение (2), строго работает только для бесконечно малых углов, было показано, что эмпирическая коррекция атомной фазы приводит к лучшим результатам, чем использование (1).

В работе корейских авторов[8], последовавшей за [1], концепция описания пятичленных колец при помощи углов α_i(см.рис. 1) была расширена

на случай гетероциклов. Предложенная ими функция для описания псевдовращения в неравносторонних кольцах выглядит так:

$$\alpha_{j} = q_{\alpha} \cos(\phi + \epsilon_{j} + 4\pi(j-1)/5)$$
(5)

здесь все параметры имеют тот же смысл, что и в (3); ∈_j - сдвиг атомной фазы; этот параметр может быть вычислен исходя из длин связей и геометрического центра в каждом конкретном случае. Данная модель является наиболее современной и полноценно описывает псевдовращение в случае неравностороннего кольца.

3.Описание геометрии и конформационных превращений тетрагидрофурана.

А. Экспериментальные методы.

Тетрагидрофуран представляет собой очень распространенное вещество и используется как растворитель. Его строение исследовалось большим количеством экспериментальных методов, однако подавляющее большинство работ в этом направлении были выполнены дифракционными методами – электронографией, нейтронографией и рентгенофазовым анализом. Первое электронографическое исследование ТГФ было проведено в 1941 г.[9], а последняя публикация по этой теме появилась в 1969г[10]. Ниже в таблице 1 приведены данные по изучению строения тетрагидрофурана дифракционными методами.

Параметр	Газовая элек-	Рентгенофазо-	Нейтронография ^в
	тронография ^а	фый анализ ^б	
Длины связей (Å)			
C-0	1.428	1.429	1.438
C-C	1.536	1.511	1.516
C-H ^r	1.115	1.050	1.097 ^д
Валентные углы (°)			
C-O-C	110.5	108.2	109.9
O-C-C	106.5	107.4	106.4
C-C-C	101.8	102.0	102.6

Таблица 1. Экспериментальные данные о геометрии тетрагидрофурана.

Торсионные углы (°)			
C5-O1-C2-C3	-11.6	-11.5	-11.3
C2-O1-C5-C4	-11.6	-11.5	-11.3
O1-C2-C3-C4	29.6	29.7	28.8
01-C5-C4-C3	29.6	29.7	28.8
C2-C3-C4-C5	-35.0	-34.9	-34.5
q_z (Å)	0.38	0.348	0.343

^а Статья [10]

⁶ Данные РФА при -170°,[11]

^вДифракция нейтронов на порошке при 5К,[12]

^г Усредненная величина.

^дДлина связи С-D.

Приведенные данные достаточно хорошо коррелируют друг с другом, и в дальнейшем могут быть использованы для оценки правильности теоретически полученных величин.

Б. Теоретическое описание тетрагидрофурана.

Молекула тетрагидрофурана может иметь шесть характеристических конформаций - три различных «твиста» и три «конверта». Для конформаций ТГФ и подобных гетероциклов была предложена своеобразная номенклатура[8], пояснить которую можно при помощи рис.3. Конформер типа «конверт» называется ⁿE (n =1..5), если n-ный атом лежит вне плоскости, образованной четырьмя остальными; конформации типа «твист» называются ^{m+1}T_m (m = 1..5), если m-й и m+1-й атомы лежат по разные стороны от плоскости, образованной тремя остальными. При этом появляется даже возможность отличать конформеры, соотносящиеся как зеркальные отображения (формально – энантиомеры!): располагая атомы по возрастанию слева направо (см. рис.3), мы получаем, что атом m+1 находится сверху, а атом m –снизу от плоскости; эту конфигурацию называем ^{m+1}T_m, a ее зеркальное отображение - _{m+1}T^m.

Рис.3. Нумерация атомов и обозначения конформаций (в данном случае X = O): (а) «конверт» ¹E; (б) «твист» ⁴T₃.

Рассчитанные в работах [1,8] относительные энергии всех возможных конформеров для циклопентана и ТГФ позволяют проанализировать и сравнить происходящие в них движения большой амплитуды. Ниже приведена зависимость потенциала псевдовращения для циклопентана, рассчитанная методом Хартри-Фока в базисе 6-31G** (см. рис. 4):

Рис.4. Зависимость энергии молекулы циклопентана от фазы псевдовращения.

Максимумам здесь соответствует конформация «конверт», минимумам – «твист»; итого получается 10 максимумов и 10 минимумов на промежутке $\phi \in [0^{\circ}, 360^{\circ}]$. В тетрагидрофуране (это будет доказано далее) дело обстоит иначе: энергия плавно убывает от ¹Е до ⁴T₃, проходя по пути все остальные конформации, поэтому на промежутке $\phi \in [0^{\circ}, 360^{\circ}]$ есть только 2 максимума и 2 минимума. Рассматривая цепочку из переходящих друг в друга конформеров, в которой каждый из последующий ниже (выше) предыдущего по энергии, можно получить довольно красивую и наглядную картину, иллюстрирующую движение большой амплитуды и поясняющую название «псевдовращение» эволюция системы вдоль фазы ϕ действительно происходит так, как если бы молекула просто вращалась (см. рис. 5).

Таким образом, мы имеем качественное описание конформационных превращений молекулы ТГФ. Для решения поставленной ранее задачи теперь

необходимо провести квантовохимические расчеты геометрии и матриц вторых производных энергии для всех конформеров.

Рис.5. Схема конформационных превращений тетрагидрофурана. Знак «+» обозначает, что атом поднят вверх относительно плоскости рисунка; знак «-», Наоборот, показывает, что атом находится ниже этой плоскости. На рисунке изображены превращения, показывающие изменение ф от 0 до 180°.

Расчетная часть.

Квантовохимические расчёты проводились методом *ab initio* MP2 при помощи помощью программы PRIRODA (версия 1.19), любезно предоставленной Д. Н. Лайковым (Цюрихский Университет, Цюрих, Швейцария). Оптимизация геометрии проводилась на вычислительном кластере MBC–1000 Межведомственного Суперкомпьютерного Центра РАН.

При расчётах использовался двухэкспоненциальный базис cc-pVDZ. Точность самосогласования выбиралась 10⁻¹² атомных единиц, точность оптимизации геометрии до нормы градиента 10⁻⁷ атомных единиц. При расчете не учитывались интегралы величиной меньше 10⁻¹⁶ атомных единиц.

Были проведены следующие квантовохимические расчеты:

1)Расчет равновесной геометрии молекулы ТГФ методом МР2. В качестве исходной была задана практически плоская структура; никаких симметрических или геометрических ограничений наложено не было.

2) Расчет с целью поиска седловой точки на поверхности потенциальной энергии (введенные начальные данные были близки к конформации ¹Е).

3)Были рассчитаны равновесные геометрии, относительные энергии и гессианы промежуточных конформаций - ${}^{3}T_{2}$, ${}^{2}T_{1}$, ${}^{2}E$ и ${}^{3}E$. Для сохранения типа конформации в процессе оптимизации на структуры были наложены геометрические ограничения. В случае «конвертов» ${}^{2}E$ и ${}^{3}E$ были зафиксированы двугранные углы O1-C5-C4-C3 и C2-O1-C5-C4 соответственно – их значение было положено равным 0.0° и не менялось в процессе оптимизации. В случае промежуточных конформаций типа «твист» параметр для явного фиксирования найти сложнее. Угол C2-C3-C4-C5 в конформации ${}^{4}T_{3}$ (по данным теоретического расчета методом MP2) равен -39.4° . Проведя аналогичный расчет для циклопентана, было получено значение этого угла в конформации T, равное -40.0° . Поскольку конформации ${}^{3}T_{2}$ и ${}^{2}T_{1}$ в некотором смысле лежат между конформациями ${}^{4}T_{3}$ для TГФ и T для циклопентана, то углы O1-C2-C3-C4 и C5-O1-C2-C3 соответственно в них были положены равными -39.7° (среднее арифметическое из двух вышеупомянутых значений).

После окончания процедуры оптимизации геометрии рассчитывалась матрица вторых производных энергии (гессиан), и находились его собственные значения. Рассчитанный гессиан и геометрия далее использовались для

моделирования электронографических кривых при помощи оригинального программного пакета ELDIFF. Были получены зависимости Im(s) (молекулярной составляющей интенсивности рассеяния) и f(r) (радиального распределения).

Результаты и их обсуждение.

1. Расчет равновесной геометрии тетрагидрофурана.

Первым шагом в анализе геометрии ТГФ был теоретический расчет геометрии молекулы методом МР2. Поскольку результат расчета может зависеть от задания начальной атомной конфигурации, в качестве исходной была задана плоская структура. Результат расчета представлен в таблице 2. Согласно полученным результатам, минимальной энергией обладает конформация «твист» ${}^{4}T_{3}$; к такому же выводу пришли и корейские авторы [8], которым принадлежит наиболее поздняя работа по теоретическому исследованию ТГФ.

Далее, на основании данных [8], был проведен расчет с целью поиска седловой точки на поверхности потенциальной энергии (введенные начальные данные были близки к конформации ¹Е). Полученная структура имела симметрию C_8 и соответствовала конформации ¹Е. Геометрические данные и относительная энергия приведены в таблице 2.

2. Расчет энергий и геометрий остальных конформаций.

Далее была получена оптимизированная геометрия для остальных конформеров. Путем оптимизации геометрии (без наложения каких – либо ограничений на торсионные углы или симметрию) с использованием к качестве исходных конфигураций, близких к необходимым, было показано, что промежуточным конформациям не соответствуют локальные минимумы (для ${}^{3}T_{2}$ и ${}^{2}T_{1}$) или седловые точки (для соответствующих «конвертов»): вне зависимости от изменяемой начальной конфигурации, система приходила к геометрии ${}^{4}T_{3}$ в случае простой оптимизации, и к ${}^{1}E$ – в случае поиска седловой точки. Поэтому на оптимизируемые структуры были наложены геометрические ограничения, описанные ниже.

В работе [8] для удержания молекулы ТГФ в нужной конформации применялся метод «мнимых» атомов. Суть этого метода заключается в том, что в z – матрицу исходной молекулы добавляются атомы нулевой массы, которые служат точкой отсчета длин связей, а также валентных и торсионных углов. Нами был использован другой метод задания конформаций (описан в расчетной части), который также дал приемлемый результат.

Полученные в результате расчетов данные приведены в таблице 2.

Параметр	¹ E	$^{4}T_{3}$	$^{1}E^{a}$	${}^{4}T_{3}{}^{a}$
Плици срязей (Å)				
	1 1 28	1 / 33	1 426	1 / 35
C-C	1.420	1.433	1.420	1.435
C-H ⁶	1.098	1.552	1.093	1.092
Валентные углы (°)	1.090	1.102	1.075	1.072
C-O-C	104.6	109.2	104.0	109.3
O-C-C	105.6	106.4	105.3	106.1
C-C-C	103.2	100.7	103.2	101.1
Торсионные углы (°)				
C5-O1-C2-C3	-41.4	-13.1	-42.6	-12.9
C2-O1-C5-C4	41.4	-13.1	42.6	-12.9
O1-C2-C3-C4	24.5	33.5	25.4	33.0
O1-C5-C4-C3	-24.5	33.5	-25.4	33.0
C2-C3-C4-C5	0.0	-39.4	0.0	-39.2
ΔЕ, ккал/моль	0.423	0.000в	0.394	0.000 ^г

Таблица 2. Геометрические параметры и относительные энергии различных конформеров.

Параметр	^{2}E	${}^{3}T_{2}$	³ E	${}^{2}T_{1}$
Длины связей (Å)				
C-0	1.426	1.432	1.432	1.430
C-C	1.542	1.528	1.533	1.531
С-Н ^б	1.101	1.103	1.104	1.102
Валентные углы (°)				
С-О-С	106.0	108.1	108.9	109.0
O-C-C	107.1	106.0	106.2	105.7
C-C-C	103.1	102.2	101.0	101.6
Торсионные углы (°)				
C5-O1-C2-C3	42.8	32.3	-25.1	-39.7
C2-O1-C5-C4	-26.5	-12.1	0.0	35.1
O1-C2-C3-C4	-41.7	-39.7	39.3	32.7
O1-C5-C4-C3	0.0	-13.5	24.5	-14.2
C2-C3-C4-C5	24.0	33.0	-37.6	-11.4
ΔE , ккал/моль	0.228	0.123	0.046	0.359

^аДанные, полученные в работе [8]. ^бУсредненное значение. ^вНоль энергии - 231.7365301 а.е. ^гНоль энергии – 231.7345141 а.е.

Анализ полученных данных позволяет сделать несколько важных для дальнейшей работы заключений. Во-первых, наиболее выгодной для тетрагидрофурана, как и для циклопентана, является конформация «твист» (а $^{4}T_{3}$). Во-вторых, промежуточные конформации именно не являются минимумами или седловыми точками – сечение ППЭ по фазе псевдовращения меняется плавно, от минимума (${}^{4}T_{3}$) до максимума (${}^{1}E$). В-третьих, «барьер» псевдовращения (разность между наиболее и наименее выгодными конформациями) составил около 0.4 ккал/моль, что является очень небольшой величиной, и свидетельствует о том, что конформеры могут свободно взаимопревращаться даже при температурах намного ниже комнатной.

3.Построение теоретических электронографических кривых.

Следующим шагом нашей работы стало построение теоретических кривых зависимости Im(s) и f(r) для полученных конформеров. Эти зависимости были построены при помощи программного комплекса ELDIFF с использованием полученных при расчетах данных – геометрических параметров и матриц вторых производных энергии (гессианов). Данные приведены в таблице 3.

		lm(s)		
E2	E3	T12	T34	
1	85,4404	86,9824	91,9728	89,6831
1,25	115,668	118,3721	131,8048	124,9989
1,5	69,967	70,6706	94,8411	80,4664
1,75	-67,1025	-74,3102	-42,1118	-66,2952
2	-250,784	-268,938	-235,178	-269,287
2,25	-409,684	-432,629	-405,735	-445,004
2,5	-492,021	-505,053	-497,454	-528,708
2,75	-486,721	-475,999	-506,795	-509,124
3	-418,337	-382,226	-472,896	-426,823
3,25	-334,358	-287,732	-449,394	-351,322
3,5	-290,467	-259,128	-480,226	-351,378
3,75	-328,551	-338,73	-585,644	-465,183
4	-446,263	-516,243	-751,988	-673,469
4,25	-573,787	-710,066	-921,937	-884,828
4,5	-582,678	-777,63	-992,557	-948,342
4,75	-338,872	-567,496	-833,823	-703,503
5	215,5863	-3,3262	-337,376	-61,1669
5,25	994,877	839,0071	511,9906	915,0717
5,5	1764,398	1714,795	1576,076	1977,609
5,75	2216,479	2283,033	2556,741	2750,262
	E2 1 1,25 1,5 1,75 2,25 2,25 2,75 3,25 3,25 3,5 3,75 4 4,25 4,5 4,25 4,5 4,75 5,25 5,25 5,75	E2E31 $85,4404$ 1,25 $115,668$ 1,5 $69,967$ 1,75 $-67,1025$ 2 $-250,784$ 2,25 $-409,684$ 2,5 $-492,021$ 2,75 $-486,721$ 3 $-418,337$ 3,25 $-334,358$ 3,5 $-290,467$ 3,75 $-328,551$ 4 $-446,263$ 4,25 $-573,787$ 4,5 $-582,678$ 4,75 $-338,872$ 5 $215,5863$ 5,25 $994,877$ 5,5 $1764,398$ 5,75 $2216,479$	Im(s)E2E3T121 $85,4404$ $86,9824$ 1,25 $115,668$ $118,3721$ 1,5 $69,967$ $70,6706$ 1,75 $-67,1025$ $-74,3102$ 2 $-250,784$ $-268,938$ 2,25 $-409,684$ $-432,629$ 2,5 $-492,021$ $-505,053$ 2,75 $-486,721$ $-475,999$ 3 $-418,337$ $-382,226$ 3,25 $-334,358$ $-287,732$ 3,5 $-290,467$ $-259,128$ 3,75 $-328,551$ $-338,73$ 4 $-446,263$ $-516,243$ 4,25 $-573,787$ $-710,066$ 4,5 $-582,678$ $-777,63$ 4,75 $-338,872$ $-567,496$ 5 $215,5863$ $-3,3262$ 5,25 $994,877$ $839,0071$ 5,5 $1764,398$ $1714,795$ 5,75 $2216,479$ $2283,033$	Im(s)E2E3T12T341 $85,4404$ $86,9824$ $91,9728$ 1,25 $115,668$ $118,3721$ $131,8048$ 1,5 $69,967$ $70,6706$ $94,8411$ 1,75 $-67,1025$ $-74,3102$ $-42,1118$ 2 $-250,784$ $-268,938$ $-235,178$ 2,25 $-409,684$ $-432,629$ $-405,735$ 2,5 $-492,021$ $-505,053$ $-497,454$ 2,75 $-486,721$ $-475,999$ $-506,795$ 3 $-418,337$ $-382,226$ $-472,896$ 3,25 $-334,358$ $-287,732$ $-449,394$ 3,5 $-290,467$ $-259,128$ $-480,226$ 3,75 $-328,551$ $-338,73$ $-585,644$ 4 $-446,263$ $-516,243$ $-751,988$ 4,25 $-573,787$ $-710,066$ $-921,937$ 4,5 $-582,678$ $-777,63$ $-992,557$ 4,75 $-338,872$ $-567,496$ $-833,823$ 5 $215,5863$ $-3,3262$ $-337,376$ 5,25 $994,877$ $839,0071$ $511,9906$ 5,5 $1764,398$ $1714,795$ $1576,076$ 5,75 $2216,479$ $2283,033$ $2556,741$

	Табли	ца 3.	Данные	теорети	ческих	расчетов	элект	роног	рамм.
--	-------	-------	--------	---------	--------	----------	-------	-------	-------

6	2102,736	2251,667	3077,813	2871,635
6,25	1358,041	1525,361	2837,664	2166,588
6,5	152,8386	277,0712	1769,517	759,6395
6,75	-1158,19	-1103,08	118,6753	-941,564
7	-2169,12	-2161,03	-1620,45	-2396,57
7,25	-2576,16	-2559,8	-2891,78	-3146,8
7,5	-2284,29	-2202,93	-3302,64	-2990,44
7,75	-1424,04	-1248,04	-2772,74	-2035,26
. 8	-285.746	-22.743	-1542.93	-623.997
8.25	793.8821	1107.824	-49.3435	817.0172
8.5	1540.279	1857.666	1258.891	1923.292
8.75	1810.33	2083.846	2071.729	2478.053
9	1609.333	1793,189	2283.715	2428,139
9.25	1064,729	1111.254	1971.021	1855.343
9.5	374 0608	236 1887	1316 692	934 4953
9 75	-255 261	-609 122	530 7856	-105 387
10	-662 229	-1224 76	-206 228	-1021.66
10 25	-774 054	-1480.82	-770 036	-1608 94
10,20	-623 505	-1354 42	-1100 77	-1757 25
10,0	-333 334	-030 78	-1202.03	-1494 16
11	-67 8124	-416 809	-1132 24	-980 598
11 25	33 0051	16 / 201	-085 213	-300,530
11,25	-86 812	223 4271	-856 956	-108 437
11 75	-372 8/13	186 0599	-802 592	-30 8034
12	670,000	8 160/	-002,392 803 257	166 880
12 25	820 273	137 600	-003,237	201 7/8
12,25	-029,275	-137,099	-703,007	-291,740
12,5	-093,770	101 4060	-540,094	-201,177
12,75	-200,022	658,0600	-57,0270	217,2190
12.25	1050 811	1129 577	1500 514	1655 466
13,25	1510.055	1434 436	2291 225	2122 691
10,0	1621 100	1404,430	2301,323	2103,001
13,75	1021,199	1401,077	2700,004	2209,302
14	1310,40	219 0409	2032,943	1791,411
14,20	79,4252	310,9400	1900,004	000,7072
14,0	-70,4002	-402,707	709,7390 506 012	-314,107
14,75	-704,000	-1203,95		-1452,27
10	-1240,04	-1073,00	-1017,9	-2293,59
10,20	-1307,90	-1792,10	-2000,79	-2004,1
10,0	-1100,70	-1047,02	-2000,02	-2007,11
10,70	-742,000	-1013,32	-2000, 10	-1004,39
10	-200,200	-324 260 222	-1/91,04	-952,91
10,20	100,0000	300,222	-1107,33	74,1704
10,0	377,3017	093,0940	-444,407	970,1200
10,75	398,5924	1177,991	90,0492	1576,088
17	270,9349	1189,7	459,6385	1/83,6/3
17,25	90,3041	975,3999	083,3000	1015,538
17,0 17,75	-17,9288	033,5341	017,7511	1184,02
11,10	-1,5/50	211,1881	924,2328 1010 600	054,3
10 10.05	152,3930	-4,015	1040,698	184,4328
10,25	305,0500	-1/2,987	1103,174	-128,42
18,5	597,8987	-242,787	1244,365	-273,098

18,75	686,2844	-264,275	1210,852	-311,723
19	586,1647	-292,1	995,4962	-336,649
19,25	297,9233	-356,358	573,6776	-418,541
19,5	-110,243	-448,25	-12,3293	-570,039
19,75	-524,39	-525,275	-653,197	-740,172
20	-823,399	-532,308	-1200,5	-839,895
20,25	-919,801	-427,982	-1514,21	-784,575
20,5	-788,532	-205,24	-1512,1	-534,073
20,75	-473,644	101,9123	-1200,73	-113,775
21	-71,9323	426,8837	-675,586	389,8082
21,25	300,1453	690,1249	-89,2453	855,0054
21,5	543,9592	822,4492	399,2807	1161,354
21,75	608,2719	785,088	675,8597	1224,571
22	501,1521	580,3433	703,6796	1019,424
22,25	281,9331	251,2669	527,3293	586,4821
22,5	37,1202	-129,285	249,2459	22,0148
22,75	-150,63	-477,11	-10,954	-545,89
23	-229,445	-717,554	-158,358	-988,679
23,25	-192,55	-803,747	-152,043	-1209,28
23,5	-75,7434	-726,815	-12,7835	-1165,8
23,75	59,5909	-515,826	190,5786	-881,074
24	151,218	-227,553	369,7037	-434,572
24,25	159,278	70,7083	449,4009	61,4646
24,5	79,7885	319,3408	393,1739	493,9931
24,75	-55,7559	480,0582	213,871	779,0917
25	-193,8	541,2852	-33,1159	880,5345
25,25	-279,609	514,899	-270,76	812,123
25,5	-277,681	426,5532	-427,862	624,2619
25,75	-184,341	304,5912	-463,144	382,1319
26	-28,4172	171,3433	-378,042	143,5204
26,25	139,6574	39,6684	-213,944	-55,6204
26,5	265,9492	-85,3482	-35,2124	-204,56
26,75	311,5344	-201,525	95,2114	-311,186
27	265,0877	-304,436	138,9276	-390,061
27,25	145,433	-384,585	95,1117	-450,83
27,5	-6,199	-428,178	-1,0489	-491,621
27,75	-140,987	-420,941	-93,4025	-499,037
28	-219,011	-353,792	-127,879	-454,454
28,25	-221,736	-227,823	-74,3352	-343,28
28,5	-156,563	-56,9554	60,5883	-163,95
28,75	-52,3347	133,1045	234,7692	66,9017
29	51,9553	309,3749	385,05	314,7382
29,25	121,051	438,649	449,6959	533,3866
29,5	135,1063	495,3617	391,0826	675,8953
29,75	95,1955	467,8374	210,0439	706,819
30	21.2712	361,3143	-52.676	612,4849
30.25	-56,1963	196.9261	-328.289	406.2374
30.5	-107.649	6.7981	-541.067	126.7152
30,75	-114.735	-173.474	-631.512	-170.922
31	-76.0561	-312,592	-574,213	-427,839
31,25	-6.5543	-389.766	-384.338	-595.457
· ,— -	-,	· , · • •		

31,5	68,6327	-397,972	-111,981	-646,437
31,75	123,5064	-343,507	174,0387	-579,581
32	140,1561	-242,822	406,5337	-418,157
32,25	114,3616	-117,612	538,327	-202,226
32,5	56,1052	10,1272	552,8528	22,1017
32,75	-14,7717	122,0336	464,4938	213,6393
33	-75,8775	205,4634	309,8846	344,1275
33,25	-109,891	253,8856	133,5987	401,9205
33,5	-109,835	266,0363	-26,1181	391,0714
33,75	-80,3894	244,6295	-147,024	327,0506
34	-35,1874	195,0049	-225,469	230,5695
34,25	8,7441	124,2691	-271,614	121,8405
34,5	37,1392	40,967	-300,438	16,7147
34,75	43,1502	-45,2895	-322,104	-74,958
35	28,9951	-124,189	-336,068	-148,512

Последним сделанным в рамках данной работы расчетом было сравнение средневзвешенной теоретической кривой и теоретической кривой, построенной для равновесной конфигурации (${}^{4}T_{3}$). Усредненная кривая была получена так: были рассчитаны статистические веса конформеров по Больцману, потом молекулярные компоненты рассеяния были просуммированы с этими весами в качестве коэффициентов (причем для каждого конформера, кроме ${}^{4}T_{3}$ и ${}^{1}E$, вклад был умножен на 2), а затем разделены на сумму весов. R – критерий

расходимости составил 23%, что свидетельствует о существенных различиях в этих моделях. На рисунках 6 и 7 приведены в сравнении кривые Im(s) и f(r) для этих двух моделей.

Рис.6. Решение формальной прямой электронографической задачи: аппроксимация средневзвешенной кривой(синяя линия) теоретической линией для равновесной конфигурации (красные точки). Зеленая линия – их разность.

Рис.7.Сравнение кривых радиального распределения.

Выводы.

- 1. Проанализирован тип и методы описания движения большой амплитуды в пятичленных циклах, в частности, в тетрагидрофуране.
- 2. Методом MP2 рассчитаны геометрические параметры и относительные энергии всех шести возможных конформеров ТГФ; на основании результатов расчета было показано, что конформация типа «твист» ⁴T₃ является наиболее устойчивой, и сделаны выводы о характере изменения поверхности потенциальной энергии вдоль координаты псевдовращения.
- Получены теоретические электронограммы для конформеров ТГФ, при помощи которых показана недостаточность моделей равновесной конфигурации и суммы конформеров, и доказана необходимость более строгого учета псевдовращения.

Список литературы.

- 1. S.J.Han, Y.K.Kang, *Theochem*, **362**,1996, 243.
- Л.В.Вилков, Ю.А. Пентин, Физические методы исследования в химии, Москва, Высшая школа, 1987.
- 3. J.E.Kilpatrick, K.S.Pitzer, R.Spitzer, J.Am.Chem.Soc., 69, 1947, 2483.
- 4. D.Cremer, J.A.Pople, J.Am. Chem. Soc., 97, 1975, 1354.
- 5. C.Altona, M.Sundaralingam, J.Am. Chem. Soc., 94, 1972, 8205.
- S.T.Rao, E.Westhof, M.Sundaralingam, Acta Crystallogr., Sect. A, 37, 1981, 421.
- 7. F.A.A.M. de Leeuw, P.N. van Kampen, C.Altona, E.Diez, A.L.Esteban, *J.Mol.Struct.*, **125**, 1984, 67.
- 8. S.J.Han, Y.K.Kang, Theochem, 369, 1998, 157.
- 9. J.Y.Beach, *Ibid.*, 9, 1941, 54.
- 10. H.J.Geise, W.J.Adams, L.S.Bartell, Tetrahederon, v.25, 1969, 3045.
- 11. P.Luger, J.Bushmann, Angew. Chem., Int. Ed. Engl., 22, 1983, 410.
- 12. W.I.F.David, R.M.Ibberson, Acta Crystallogr., Sect C, 48, 1992, 301.